
2.5. USING C PROGRAMS TO EXPLORE DATA FORMATS 14

2.5 Using C Programs to Explore Data Formats
Before writing any programs, I urge you to read Appendix B on writing Make-
files, even if you are familiar with them. Many of the problems I have helped
students solve are due to errors in their Makefile. And many of the Makefile
errors go undetected due to the default behavior of the make program.

We will use the C programming language to illustrate these concepts because it takes
care of the memory allocation problem, yet still allows us to get reasonably close to
the hardware. You probably learned to program in the higher-level, object-oriented
paradigm using either C++ or Java. C does not support the object-oriented paradigm.
C is a procedural programming language. The program is divided into functions.

Since there are no classes in C, there is no such thing as a member function. The
programmer focuses on the algorithms used in each function, and all data items are
explicitly passed to the functions.
We can see how this works by exploring the C Standard Library functions, printf

and scanf, which are used to write to the screen and read from the keyboard. We will
develop a program in C using printf and scanf to illustrate the concepts discussed in
the previous sections. The header file required by either of these functions is:

#include <stdio.h>

which includes the prototype statements for the printf and scanf functions:
int printf(const char *format, ...);
int scanf(const char *format, ...);

printf is used to display text on the screen. The first argument, format, controls the
text display. At its simplest, format is simply an explicit text string in double quotes.1
For example,

printf("Hello, world.\n");

would display

Hello, world.

If there are additional arguments, the format string must specify how each of these
arguments is to be converted for display. This is accomplished by inserting a conversion
code within the format string at the point where the argument value is to be displayed.
Each conversion code is introduced by the ’%’ character. For example, Listing 2.1 shows
how to display both an int variable and a float variable.

1 /*
2 * intAndFloat.c
3 * Using printf to display an integer and a float.
4 * Bob Plantz - 4 June 2009
5 */
6 #include <stdio.h>
7

8 int main(void)
9 {
10 int anInt = 19088743;
11 float aFloat = 19088.743;

1The text string is a null-terminated array of characters as described in Section 2.7 (page 21). This is not
the C++ string class.

2.5. USING C PROGRAMS TO EXPLORE DATA FORMATS 15

12

13 printf("The integer is %i and the float is %f\n", anInt, aFloat);
14

15 return 0;
16 }

Listing 2.1: Using printf to display numbers.

Compiling and running the program in Listing 2.1 on my computer gave (user input
is boldface):

bob$ gcc -Wall -o intAndFloat intAndFloat.c
bob$./intAndFloat
The integer is 19088743 and the float is 19088.742188
bob$

Yes, the float really is that far off. This will be explained in Chapter 14.

This is not a book about how to use the GNU development environment, so I usually do not
show the compile command. I am showing it here to help get you started. You should use
the man gcc command to learn about the command line options.

Some common conversion codes are d or i for integer, f for float, and x for hexadeci-
mal. The conversion codes may include other characters to specify properties like the
field width of the display, whether the value is left or right justified within the field, etc.
We will not cover the details here. You should read man page 3 for printf to learn more.

scanf is used to read from the keyboard. The format string typically includes only
conversion codes that specify how to convert each value as it is entered from the
keyboard and stored in the following arguments. Since the values will be stored in
variables, it is necessary to pass the address of the variable to scanf. For example, we
can store keyboard-entered values in x (an int variable) and y (a float variable) thusly

scanf("%i %f", &x, &y);

The use of printf and scanf are illustrated in the C program in Listing 2.2, which
will allow us to explore the mathematical equivalence of the decimal and hexadecimal
number systems.

1 /*
2 * echoDecHex.c
3 * Asks user to enter a number in decimal and one
4 * in hexadecimal then echoes both in both bases
5 * Bob Plantz - 4 June 2009
6 */
7

8 #include <stdio.h>
9

10 int main(void)
11 {
12 int x;
13 unsigned int y;
14

15 while(1)
16 {
17 printf("Enter a decimal integer (0 to quit): ");
18 scanf("%i", &x);

2.5. USING C PROGRAMS TO EXPLORE DATA FORMATS 16

19 if (x == 0) break;
20

21 printf("Enter a bit pattern in hexadecimal (0 to quit): ");
22 scanf("%x", &y);
23 if (y == 0) break;
24

25 printf("%i is stored as %#010x, and\n", x, x);
26 printf("%#010x represents the decimal integer %i\n\n", y, y);
27 }
28

29 printf("End of program.\n");
30

31 return 0;
32 }

Listing 2.2: C program showing the mathematical equivalence of the decimal and hex-
adecimal number systems.

Here is an example run of this program (user input is boldface):

bob$./echoDecHex
Enter a decimal integer: 123
Enter a bit pattern in hexadecimal: 7b
123 is stored as 0x0000007b, and
0x0000007b represents the decimal integer 123

Enter a decimal integer: 0
End of program.
bob$

Let us walk through the program in Listing 2.2.

• The program declares two ints, x and y.

• The user is prompted to enter an integer in decimal, and the user’s response is read
from the keyboard and stored in the memory allocated for x. The conversion code
text string passed to scanf, “%i”, causes scanf to interpret the user’s keystrokes
as representing a decimal integer. Note that the address of x, &x, must be passed
to scanf so that it can store the integer at the memory location named x.

• The program next prompts the user to enter a bit pattern in hexadecimal. In this
case the conversion code text string passed to scanf is “%x”, which causes scanf
to interpret the user’s keystrokes as representing hexadecimal digits. Note that
the address of y, &y, must be passed to scanf so that it can store the integer at the
memory location named y.

• Now let us examine the two printf function calls that display the results. The “%i”
conversion code is straightforward. The value of the corresponding variable is
displayed in decimal at that point in the text string.

• The “%#010x” conversion factor is more interesting. (If you are at a computer
read section 3 of the man page for printf as you follow through this description.)
The basic conversion is specified by the “x” character; it causes the value to be
displayed in hexadecimal. The “#” character causes an “alternate form” to be used
for the display, which is the C syntax for hexadecimal numbers; that is, the value
is prefaced by 0x when it is displayed. The ‘0’ character immediately after the ‘#’

2.6. EXAMINING MEMORY WITH GDB 17

character causes ‘0’ to be used as the fill character. The number “10” causes the
display to occupy at least ten characters (the field width).

• Look carefully at the output from this program above. The bit patterns used to
store the data input by the user, shown in hexadecimal, show that the unsigned
ints are stored in the binary number system (see Section 2.2, page 8 and Section
2.3, page 9). That is, 12310 is stored as 0000007b16.

The program in Listing 2.2 demonstrates a very important concept — hexadecimal
is used as a human convenience for stating bit patterns. A number is not inherently
binary, decimal, or hexadecimal. A particular value can be expressed in a precisely
equivalent way in each of these three number bases. For that matter, it can be expressed
equivalently in any number base.

2.6 Examining Memory With gdb
Now that we have started writing programs, you need to learn how to use the GNU
debugger, gdb. It may seem premature at this point. The programs are so simple, they
hardly require debugging. Well, it is better to learn how to use the debugger on a simple
example than on a complicated program that does not work. In other words, tackle one
problem at a time.
There is a better reason for learning how to use gdb now. You will find that it is a

very valuable tool for learning the material in this book, even when you write bug-free
programs.

gdb has a large number of commands, but the following are the ones that will be
used in this section:

• li lineNumber — lists ten lines of the source code, centered at the specified line
number.

• break sourceFilename:lineNumber — sets a breakpoint at the specified line in
the source file. Control will return to gdb when the line number is encountered.

• run — begins execution of a program that has been loaded under control of gdb.

• cont — continues execution of a program that has been running.

• print expression — evaluate expression and display its value.

• printf "format", var1, var2,... — displays the values of the vars, using the
format specified in the format string.2

• x/nfs memoryAddress — displays (examine) n values in memory in format f of size
s starting at memoryAddress.

We will use the program in Listing 2.1 to see how gdb can be used to explore the
concepts in more depth. Here is a screen shot of how I compiled the program then
used gdb to control the execution of the program and observe the memory contents. My
typing is boldface and the session is annotated in italics. Note that you will probably
see different addresses if you replicate this example on your own (Exercise 2-27).

bob$ gcc -g -Wall -o intAndFloat intAndFloat.c
2Follows the same pattern as the C Standard Library printf.

2.6. EXAMINING MEMORY WITH GDB 18

The “-g” option is required. It tells the compiler to include debugger informa-
tion in the executable program.

bob$ gdb ./intAndFloat
GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2) 7.4-2012.04
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://bugs.launchpad.net/gdb-linaro/>...
Reading symbols from /home/bob/my_book_working/progs/chap02/intAndFloat...done.
(gdb) li
1 /*
2 * intAndFloat.c
3 * Using printf to display an integer and a float.
4 * Bob Plantz - 4 Jun 2009
5 */
6 #include <stdio.h>
7
8 int main(void)
9 {
10 int anInt = 19088743;
(gdb)
11 float aFloat = 19088.743;
12
13 printf("The integer is %i and the float is %f\n", anInt, aFloat);
14
15 return 0;
16 }
(gdb)

The li command lists ten lines of source code. The display ends with the (gdb)
prompt. Pushing the return key will repeat the previous command, and li is
smart enough to display the next (up to) ten lines.

(gdb) br 13
Breakpoint 1 at 0x40050b: file intAndFloat.c, line 13.

I set a breakpoint at line 13. When the program is executing, if it ever gets
to this statement, execution will pause before the statement is executed, and
control will return to gdb.

(gdb) run
Starting program: /home/bob/intAndFloat

Breakpoint 1, main () at intAndFloat.c:13
13 printf("The integer is %i and the float is %f\n", anInt, aFloat);

The run command causes the program to start execution from the beginning.
When it reaches our breakpoint, control returns to gdb.

5.3. SEQUENTIAL LOGIC CIRCUITS 111

Each electronic element in a circuit takes time to activate. It is a very short period of
time, but it can vary slightly depending upon precisely how the other logic elements are
interconnected and the state of each of them when they are activated. The problem here
is that the Control input is being used to control the circuit based on the clock signal
level. The clock level must be maintained for a time long enough to allow all the circuit
elements to complete their activity, which can vary depending on what actions are being
performed. In essence, the circuit timing is determined by the circuit elements and their
actions instead of the clock. This makes it very difficult to achieve a reliable design.
It is much easier to design reliable circuits if the time when an activity can be

triggered is made very short. The solution is to use edge-triggered logic elements. The
inputs are applied and enough time is allowed for the electronics to settle. Then the
next clock transition activates the circuit element. This scheme provides concise timing
under control of the clock instead of timing determined more or less by the particular
circuit design.

5.3.3 Flip-Flops
Although the terminology varies somewhat in the literature, it is generally agreed that
(see Figure 5.15.):

• A latch uses a level based clock signal.

• A flip-flop is triggered by a clock signal edge.

At each “tick” of the clock, there are four possible actions that might be taken on a
single bit — store 0, store 1, complement the bit (also called toggle), or leave it as is.
A D flip-flop is a common device for storing a single bit. We can turn the D latch into

a D flip-flop by using two D latches connected in a master/slave configuration as shown
in Figure 5.22. Let us walk through the operation of this circuit.

D

CK

Q

Q′

Master Slave

Figure 5.22: D flip-flop, positive-edge triggering.

The bit to be stored, 0 or 1, is applied to the D input of the Master D latch. The
clock signal is applied to the CK input. It is normally 0. When the clock signal makes a
transition from 0 to 1, the Master D latch will either Reset or Set, following the D input
of 0 or 1, respectively.

While the CK input is at the 1 level, the control signal to the Slave D latch is 1, which
deactivates this latch. Meanwhile, the output of this flip-flop, the output of the Slave D
latch, is probably connected to the input of another circuit, which is activated by the
same CK. Since the state of the Slave does not change during this clock half-cycle, the
second circuit has enough time to read the current state of the flip-flop connected to its
input. Also during this clock half-cycle, the state of the Master D latch has ample time
to settle.

5.3. SEQUENTIAL LOGIC CIRCUITS 112

When the CK input transitions back to the 0 level, the control signal to the Master
D latch becomes 1, deactivating it. At the same time, the control input to the Slave D
latch goes to 0, thus activating the Slave D latch to store the appropriate value, 0 or 1.
The new input will be applied to the Slave D latch during the second clock half-cycle,
after the circuit connected to its output has had sufficient time to read its previous state.
Thus, signals travel along a path of logic circuits in lock step with a clock signal.
There are applications where a flip-flop must be set to a known value before the

clocking begins. Figure 5.23 shows a D flip-flop with an asynchronous preset input
added to it. When a 1 is applied to the PR input, Q becomes 1 and Q′ 0, regardless of

D

CK

Q

Q′

PR

Figure 5.23: D flip-flop, positive-edge triggering with asynchronous preset.

what the other inputs are, even CLK. It is also common to have an asynchronous clear
input that sets the state (and output) to 0.
There are more efficient circuits for implementing edge-triggered D flip-flops, but

this discussion serves to show that they can be constructed from ordinary logic gates.
They are economical and efficient, so are widely used in very large scale integration
circuits. Rather than draw the details for each D flip-flop, circuit designers use the
symbols shown in Figure 5.24. The various inputs and outputs are labeled in this figure.

Q1

Q

Q

CK
PR

CLR
D

Q2

Q

Q

CK
PR

CLR
D

(a) (b)

Figure 5.24: Symbols for D flip-flops. Includes asynchronous clear (CLR) and preset
(PR). (a) Positive-edge triggering; (b) Negative-edge triggering.

Hardware designers typically use Q instead of Q′. It is common to label the circuit as
“Qn,” with n = 1, 2,. . . for identification. The small circle at the clock input in Figure
5.24(b) means that this D flip-flop is triggered by a negative-going clock transition. The
D flip-flop circuit in Figure 5.22 can be changed to a negative-going trigger by simply
removing the first NOT gate at the CK input.
The flip-flop that simply complements its state, a T flip-flop, is easily constructed

from a D flip-flop. The state table and state diagram for a T flip-flop are shown in Figure

5.3. SEQUENTIAL LOGIC CIRCUITS 113

5.25.

Current Next
T State State
0 0 0
0 1 1
1 0 1
1 1 0

0 10

1

0

1

T

Figure 5.25: T flip-flop state table and state diagram. Each clock tick causes a state
transition, with the next state depending on the current state and the value
of the input, T .

To determine the value that must be presented to the D flip-flop in order to implement
a T flip-flop, we add a column for D to the state table as shown in Table 5.6. By simply

Current Next
T State State D
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

Table 5.6: T flip-flop state table showing the D flip-flop input required to place the T
flip-flop in the next state.

looking in the “Next State” column we can see what the input to the D flip-flop must be
in order to obtain the correct state. These values are entered in the D column. (We will
generalize this design procedure in Section 5.4.)
From Table 5.6 it is easy to write the equation for D:

D = T ′ ·Q+ T ·Q′
= T ⊕Q (5.16)

The resulting design for the T flip-flop is shown in Figure 5.26.

Q1

Q

Q

CK

D Q

Q′

T

CK

(a)

Q2

Q

Q

CK

T

(b)

Figure 5.26: T flip-flop. (a) Circuit using a D flip-flop. (b) Symbol for a T flip-flop.

5.3. SEQUENTIAL LOGIC CIRCUITS 114

Implementing all four possible actions — set, reset, keep, toggle — requires two
inputs, J and K, which leads us to the JK flip-flop. The state table and state diagram for
a JK flip-flop are shown in Figure 5.27.

Current Next
J K State State
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

0 100
01

10
11

00
10

01
11

JK

Figure 5.27: JK flip-flop state table and state diagram.

In order to determine the value that must be presented to the D flip-flop we add a
column for D to the state table as shown in Table 5.7. shows what values must be input

Current Next
J K State State D
0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 0 0
1 0 0 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0

Table 5.7: JK flip-flop state table showing the D flip-flop input required to place the JK
flip-flop in the next state.

to the D flip-flop. From this it is easy to write the equation for D:

D = J ′ ·K ′ ·Q+ J ·K ′ ·Q′ + J ·K ′ ·Q+ J ·K ·Q′
= J ·Q′ · (K ′ +K) +K ′ ·Q · (J + J ′)

= J ·Q′ +K ′ ·Q
(5.17)

Thus, a JK flip-flop can be constructed from a D flip-flop as shown in Figure 5.28.

5.4. DESIGNING SEQUENTIAL CIRCUITS 115

Q1

Q

Q

CK

D

Q′

Q

J

K

CK

(a)

Q

Q

CK

PR

CLR

K

J

(b)

Q2

Figure 5.28: JK flip-flop. (a) Circuit using a D flip-flop. (b) Symbol for a JK flip-flop with
asynchronous CLR and PR inputs.

5.4 Designing Sequential Circuits
We will now consider a more general set of steps for designing sequential circuits.1
Design in any field is usually an iterative process, as you have no doubt learned from
your programming experience. You start with a design, analyze it, and then refine the
design to make it faster, less expensive, etc. After gaining some experience, the design
process usually requires fewer iterations.
The following steps form a good method for a first working design:

1. From the word description of the problem, create a state table and/or state diagram
showing what the circuit must do. These form the basic technical specifications for
the circuit you will be designing.

2. Choose a binary code for the states, and create a binary-coded version of the state
table and/or state diagram. For N states, the code will need log2 bits. Any code will
work, but some codes may lead to simpler combinational logic in the circuit.

3. Choose a particular type of flip-flop. This choice is often dictated by the components
you have on hand.

4. Add columns to the state table that show the input required to each flip-flop in
order to effect each transition that is required.

5. Simplify the input(s) to each flip-flop. Karnaugh maps or algebraic methods are
good tools for the simplification process.

6. Draw the circuit.

Example 5-a

Design a counter that has an Enable input. When Enable = 1 it increments through
the sequence 0, 1, 2, 3, 0, 1,. . .with each clock tick. Enable = 0 causes the counter to
remain in its current state.

Solution:

1I wish to thank Dr. Lynn Stauffer for her valuable suggestions for this section.

8.4. LOCAL VARIABLES ON THE CALL STACK 188

8.4 Local Variables on the Call Stack
Now we see that we can store values on the stack by pushing them, and that the
push operation decreases the value in the stack pointer register, rsp. In other words,
allocating variables on the call stack involves subtracting a value from the stack pointer.
Similarly, deallocating variables from the call stack involves adding a value to the stack
pointer.
From this it follows that we can create local variables on the call stack by simply

subtracting the number of bytes required by each variable from the stack pointer. This
does not store any data in the variables, it simply sets aside memory that we can use.
(Perhaps you have experienced the error of forgetting to initialize a local variable in C!)

Next, we have to figure out a way to access this reserved data area on the call stack.
Notice that there are no labels in this area of memory. So we cannot directly use a name
like we did when accessing memory in the .data segment.

We could use the popl and pushl instructions to store data in this area. For example,
popl %eax
movl $0, %eax
pushl %eax

could be used to store zero in a variable. But this technique would obviously be very
tedious, and any changes made to your code would almost certainly lead to a great
deal of debugging. For example, can you figure out the reason I had to do a pop before
pushing the value onto the stack? (Recall that the four bytes have already been reserved
on the stack.)
At first, it may seem tempting to use the stack pointer, rsp, as the reference pointer.

But this creates complications if we wish to use the stack within the function.
A better technique would be to maintain another pointer to the local variable area

on the stack. If we do not change this pointer throughout the function, we can always
use the base register plus offset addressing mode to directly access any of the local
variables. The syntax is:

offset(register_name)

Intel®
Syntax [register_name + offset]

When it is zero, the offset is not required.

base register plus offset: The data value is located in memory. The address of the
memory location is the sum of a value in a register plus an offset value, which can
be an 8-, 16- or 32-bit signed integer.

syntax: place parentheses around the register name with the offset value
immediately before the left parenthesis.
examples: -8(%rbp); (%rsi); 12(%rax)

Intel®
Syntax [rbp - 8]; [rsi]; [rax + 12]

The appropriate register for implementing this is the frame pointer, rbp.
When a function is called, the calling function begins the process of creating an area

on the stack, called the stack frame. Any arguments that need to be passed on the call
stack are first pushed onto it, as described in Section 11.2. Then the call instruction
pushes the return address onto the call stack (page 173).

8.4. LOCAL VARIABLES ON THE CALL STACK 189

The first thing that the called function must do is to complete the creation of the
stack frame. The function prologue, first introduced in Section 7.2 (page 148), performs
the following actions at the very beginning of each function:

1. Save the caller’s value in the frame pointer on the stack.

2. Copy the current value in the stack pointer to the frame pointer.

3. Subtract a value from the stack pointer to allow for the local variables.

Once the function prologue has completed the stack frame, we observe that:

• The local variables are located in an area of the call stack – between the addresses
in the rsp and rbp registers.

• The rbp register is a pointer to the bottom (the numerically highest address) of the
local variable area.

• The remaining area of the stack can be accessed using the stack pointer (rsp) as
always.

Notice that each local variable is located at some fixed offset from the base register, rbp.
In fact, it’s a negative offset.

Listing 8.5 is the compiler-generated assembly language for the program in Listing 2.4
(page 25). Comments have been added to explain the parts of the code being discussed
here.

1 .file "echoChar1.c"
2 .section .rodata
3 .LC0:
4 .string "Enter one character: "
5 .LC1:
6 .string "You entered: "
7 .text
8 .globl main
9 .type main, @function
10 main:
11 pushq %rbp # save caller’s frame pointer
12 movq %rsp, %rbp # establish our frame pointer
13 subq $16, %rsp # space for local variable
14 movl $21, %edx # 21 characters
15 movl $.LC0, %esi # address of "Enter ... "
16 movl $1, %edi # STDOUT_FILENO
17 call write
18 leaq -1(%rbp), %rax # address of aLetter var.
19 movl $1, %edx # 1 character
20 movq %rax, %rsi # address in correct reg.
21 movl $0, %edi # STDIN_FILENO
22 call read
23 movl $13, %edx # 13 characters
24 movl $.LC1, %esi # address of "You ... "
25 movl $1, %edi # STDOUT_FILENO
26 call write
27 leaq -1(%rbp), %rax # address of aLetter var
28 movl $1, %edx # 1 character
29 movq %rax, %rsi # address in correct reg.

8.4. LOCAL VARIABLES ON THE CALL STACK 190

30 movl $1, %edi # STDOUT_FILENO
31 call write
32 movl $0, %eax # return 0;
33 leave # undo stack frame
34 ret # back to caller
35 .size main, .-main
36 .ident "GCC: (Ubuntu/Linaro 4.7.0-7ubuntu3) 4.7.0"
37 .section .note.GNU-stack,"",@progbits

Listing 8.5: Echoing characters entered from the keyboard (gcc assembly language).
Comments added. Refer to Listing 2.4 for the original C version.

The function begins by pushing a copy of the caller’s frame pointer (in the rbp register)
onto the call stack, thus saving it. Next it sets the frame pointer for this register at
the current top of the stack. These two actions establish a reference point to the stack
frame for this function.
Next the program allocates sixteen bytes on the stack for the local variable, thus

growing the stack frame by sixteen bytes. It may seem wasteful to set aside so much
memory since the only variable in this program requires only one byte of memory,
but the ABI [25] specifies that the stack pointer (rsp) should be on a sixteen-byte
address boundary before calling another function. The easiest way to comply with this
specification is to allocate memory for local variables in multiples of sixteen.
Figure 8.5 shows the state of the stack just after the prologue has been executed.

The return address to the calling function is safely stored on the stack, followed by the

1 byte for aLetter

Unused memory (15 bytes)

Memory available
for use as
a stack by
this function

rsp

rbp +8
+0
-8
-16

Return address
Caller’s rbp

Figure 8.5: Local variables in the program from Listing 8.5 are allocated on the stack.
Numbers on the left are offsets from the address in the frame pointer (rbp
register).

caller’s frame pointer value. The stack pointer (rsp) has been moved up the stack to
allow memory for the local variable. If this function needs to push data onto the stack,
such activity will not interfere with the local variable, the caller’s frame pointer value,
nor the return address. The frame pointer (rbp) provides a reference point for accessing
the local variable.

IMPORTANT: The space for the local variables must be allocated immediately after es-
tablishing the frame pointer. Any other use of the stack within the function, e.g., saving
registers, must be done after allocating space for local variables.

Most of the code in the body of the function is already familiar to you, but the
instruction that loads the address of the local variable, aString into the rax register:

8.4. LOCAL VARIABLES ON THE CALL STACK 191

18 leaq -1(%rbp), %rax # address of aLetter var.
is new. It uses the base register plus offset addressing mode for the source. We can see
from the instruction on line 18 that the aString variable is located one byte negative from
the address in the rbp register. Since the call stack grows toward negative addresses,
this is the next available byte in this function’s stack frame.
As with the write function, the second argument to the read function must be the

address of a variable. However, the address of aString cannot be known when the
program is compiled and linked because it is the address of a variable that exists in the
stack frame. There is no way for the compiler or linker to know where this function’s
stack frame will be in memory when it is called. The address of the variable must be
computed at run time.
Each instruction that accesses a stack frame variable must compute the variable’s

address, which is called the effective address. The instruction for computing addresses
is load effective address — leal for 32-bit and leaq for 64-bit addresses. The syntax of
the lea instruction is

leaw source, %register

where w = l for 32-bit, q for 64-bit.
Intel®
Syntax lea register, source

The source operand must be a memory location. The lea instruction computes the
effective address of the source operand and stores that address in the destination
register. So the instruction

leaq -1(%rbp), %rax
takes the value in rbp (the base address of this function’s stack frame), adds -1 to it,
and stores this sum in rax. Now rax contains the address of the variable aLetter. (The
address still needs to be moved to rsi for the call to the read function.)
So the following code sequence:

18 leaq -1(%rbp), %rax # address of aLetter var.
19 movl $1, %edx # 1 character
20 movq %rax, %rsi # address in correct reg.
21 movl $0, %edi # STDIN_FILENO
22 call read
implements the C statement

14 read(STDIN_FILENO, &aLetter, 1); // one character
in the original C program (Listing 2.4, page 25). (Yes, it would have been more efficient
to use rsi as the destination for the leaq instruction. Recall that this program was
compiled with the -O0 option, no optimization. You can also expect this to vary across
different versions of the compiler.)
Some notes about the read function call:
• The characters read from the keyboard must be stored in memory. You cannot pass
the name of a CPU register to the read function.

• The number of bytes actually read from the keyboard is returned in the eax register.
So if the current function is using eax, the value will be changed by the call to read.

• The read function is a C wrapper that sets up the registers for the syscall instruc-
tion. Unfortunately, there is no guarantee that it restores the values that were in
the registers when it was called.

8.4. LOCAL VARIABLES ON THE CALL STACK 192

IMPORTANT: Since neither the write nor the read system call functions are guaranteed to
restore the values in the registers, your program must save any required register values
before calling either of these functions.

There is also a new instruction on line 33:
33 leave # undo stack frame

Just before this function exits the portion of the stack frame allocated by this function
must be released and the value in the rbp register restored. The leave instruction
performs the actions:

movq %rbp, %rsp
popq %rbp

which effectively

1. deletes the local variables

2. restores the caller’s frame pointer value

After the epilogue has been executed, the stack is in the state shown in Figure 8.6.
The stack pointer (rsp) points to the address that will return program flow back to the

1 byte for aLetter

Unused memory (15 bytes)

rsp

+8
+0
-8
-16

Return address
Caller’s rbp

Figure 8.6: Local variable stack area in the program from Listing 8.5. Although the
values in the gray area may remain they are invalid; using them at this point
is a programming error.

instruction immediately after the call instruction that called this function. Although
the data that was stored in the memory which is now above the stack pointer is still
there, it is a violation of stack protocol to access it.
One more step remains in completing execution of this function — returning to the

calling function. Since the return address is at the top of the call stack, this is a simple
matter of popping the address from the top of the stack into the rip register. This
requires a special instruction,

ret

which does not require any arguments.
Recall that there are two classes of local variables in C:

Automatic variables are created when the function is first entered. They are deleted
upon exit from the function, so any value stored in them during execution of the
function is lost.

Static variables are created when the program is first started. Any values stored in
them persist throughout the lifetime of the program.

8.4. LOCAL VARIABLES ON THE CALL STACK 193

Most local variables in a function are automatic variables. General purpose registers
are used for local variables whenever possible. Since there is only one set of general
purpose registers, a function that is using one for a variable must be careful to save the
value in the register before calling another function. Register usage is specified by the
ABI [25] as shown in Table 6.4 on page 134. But you should not write code that depends
upon everyone else following these recommendations, and there are only a small number
of registers available for use as variables. In C/C++, most of the automatic variables are
typically allocated on the call stack. As you have seen in the discussion above, they are
created (automatically) in the prologue when the function first starts and are deleted in
the epilogue just as it ends. Static variables must be stored in the data segment.
We are now in a position to write the echoChar program in assembly language. The

program is shown in Listing 8.6.

1 # echoChar2.s
2 # Prompts user to enter a character, then echoes the response
3 # Bob Plantz - 8 June 2009
4

5 # Useful constants
6 .equ STDIN,0
7 .equ STDOUT,1
8 # Stack frame
9 .equ aLetter,-1
10 .equ localSize,-16
11 # Read only data
12 .section .rodata
13 prompt:
14 .string "Enter one character: "
15 .equ promptSz,.-prompt-1
16 msg:
17 .string "You entered: "
18 .equ msgSz,.-msg-1
19 # Code
20 .text # switch to text section
21 .globl main
22 .type main, @function
23 main:
24 pushq %rbp # save caller’s frame pointer
25 movq %rsp, %rbp # establish our frame pointer
26 addq $localSize, %rsp # for local variable
27

28 movl $promptSz, %edx # prompt size
29 movl $prompt, %esi # address of prompt text string
30 movl $STDOUT, %edi # standard out
31 call write # invoke write function
32

33 movl $2, %edx # 1 character, plus newline
34 leaq aLetter(%rbp), %rsi # place to store character
35 movl $STDIN, %edi # standard in
36 call read # invoke read function
37

38 movl $msgSz, %edx # message size
39 movl $msg, %esi # address of message text string
40 movl $STDOUT, %edi # standard out

