CHAPTER 11. INSTRUCTION DETAILS 198

@ assignment2.s
Assignment three ways.
@ 2017-09-29: Bob Plantz

@

@ Define my Raspberry Pi

.Ccpu cortex-ab3
. fpu neon-fp-armv8
.syntax unified @ modern syntax

@ Useful source code constants
.equ z,-20
.equ local,8

@ Constant program data

.section .rodata
.align 2
formatMsg:
.asciz** I "%i + %i = %i\n"

@ Program code
.text
.align 2
.global main
.type main, %function

main:
sub sp, sp, 16 @ space for saving regs
str r4, [sp, 0] @ save r4
str r5, [sp, 4] @ r5
str fp, [sp, 8] @ fp
str lr, [sp, 12] @ and lr
add fp, sp, 16 @ our frame pointer
sub sp, sp, Llocal @ allocate memory for local var
mov r5, 123 @ x = 123;
ldr r4, yValue @y = 4567;
add r3, r5, r4 @ x + vy
str r3, [fp, z] @ z = x + y;
ldr ré, formatMsgAddr @ printf("%i + %i = %i\n",
mov rit, rb5 €] X,
mov r2, r4 @ v,
ldr r3, [fp, z] @ z);
bl printf
mov ro, o @ return 0;
add sp, sp, Llocal @ deallocate local var
ldr r4, [sp, 0] @ restore r4
ldr r5, [sp, 4] @ rs
ldr fp, [sp, 8] c] fp
ldr lr, [sp, 12] @ and lr
add sp, sp, 16 @ restore sp
bx lr @ return
.align 2
yValue:
.word 4567
formatMsgAddr:

.word formatMsg

Listing 11.2.3 Assignment to a register variable (prog asm).

CHAPTER 11. INSTRUCTION DETAILS 199

First, notice that the values in the r4 and r5 registers must be saved on the stack in the prologue:

sub sp, sp, 16 @ space for saving regs
str r4, [sp, 0] @ save r4
str r5, [sp, 4] @ r5
str fp, [sp, 8] @ fp
str lr, [sp, 12] @ and lr

and restored in the epilogue:

ldr r4, [sp, 0] @ restore r4
ldr r5, [sp, 4] @ r5
ldr fp, [sp, 8] @ fp
ldr lr, [sp, 12] @ and lr
add sp, sp, 16 @ restore sp

as is specified in Table 10.1.1.
After setting up our frame pointer, we move the stack pointer to allocate space on the stack for
the local variable:

add fp, sp, 12 @ our frame pointer
sub sp, sp, Llocal @ allocate memory for local var

where the value of local was computed to (a) allow enough memory space for the int variable,
and (b) make sure the stack pointer is always on an eight-byte addressing boundary, as required by
the protocol when calling a public function (printf in this case).

You have already seen the first two assignment implementations:

@ x 123;
@y = 4567;

mov r5, 123
ldr r4, yValue

in Listing 10.1.4. The integer value, 123, is within the range that can be moved directly into a
register. However, 4567 cannot, so it is stored in memory and loaded into a register from memory.

The compiler honored our request to use registers for both the x and y variables. However, the
z variable is allocated in the stack frame. So after the addition is performed, the sum is stored in
memory at a location relative to the frame pointer:

str r3, [fp, z] @ z = x +y;

Recall from Section 9.2 that [fp, z] specifies the address obtained by adding the value of z to
the value contained in the fp register. In this function z is an offset of —16 bytes from the address in
fp.

In Section 11.3 we discuss the machine code for the instructions that implement these assignment
statements. In particular, we will be looking at how the location of each variable is encoded in the
machine language.

11.3 Machine Code, Assignment

Each assembly language instruction must be translated into its corresponding machine code, including
the locations of any data it manipulates. It is the bit pattern of the machine code that directs the
activities of the control unit.

The goal here is to show you that a computer performs its operations based on bit patterns. That
is, on-off switches that are connected in ways that were introduced in Chapters 5-8.

As you read through this material, keep in mind that even though this material is quite tedious,
the operations are very simple. Fortunately, instruction execution is very fast, so lots of meaningful
work can be done by the computer.

