Skip to main content
\(\newcommand{\doubler}[1]{2#1} \newcommand{\binary}{\mathtt} \newcommand{\hex}{\mathtt} \newcommand{\octal}{\mathtt} \newcommand{\prog}{\mathtt} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section2.4Exercises

1

Referring to Equation (2.3.3), what are the values of \(r\text{,}\) \(n\) and each \(d_{i}\) for the decimal number \(29458254\text{?}\) The hexadecimal number \(\hex{29458254}\text{?}\)

Answer
2

Convert the eight-digit binary number \(\binary{1010} \; \binary{0101}\) to decimal.

Answer
3

Convert the following 8-bit binary numbers to decimal by hand:

  1. \(\binary{1010} \; \binary{1010} \)

  2. \(\binary{0101} \; \binary{0101} \)

  3. \(\binary{1111} \; \binary{0000} \)

  4. \(\binary{0000} \; \binary{1111} \)

  5. \(\binary{1000} \; \binary{0000} \)

  6. \(\binary{0110} \; \binary{0011} \)

  7. \(\binary{0111} \; \binary{1011} \)

  8. \(\binary{1111} \; \binary{1111} \)

Answer
4

Convert the following 16-bit binary numbers to decimal by hand:

  1. \(\binary{1010} \; \binary{1011} \; \binary{1110} \; \binary{1101}\)

  2. \(\binary{0001} \; \binary{0011} \; \binary{0011} \; \binary{0100}\)

  3. \(\binary{1111} \; \binary{1110} \; \binary{1101} \; \binary{1100}\)

  4. \(\binary{0000} \; \binary{0111} \; \binary{1101} \; \binary{1111}\)

  5. \(\binary{1000} \; \binary{0000} \; \binary{0000} \; \binary{0000}\)

  6. \(\binary{0000} \; \binary{0100} \; \binary{0000} \; \binary{0000}\)

  7. \(\binary{0111} \; \binary{1011} \; \binary{1010} \; \binary{1010}\)

  8. \(\binary{0011} \; \binary{0000} \; \binary{0011} \; \binary{1001}\)

Answer
5

Develop an algorithm to convert hexadecimal to decimal, and then convert the following 16-bit numbers to decimal by hand:

  1. \(\hex{a000}\)

  2. \(\hex{ffff}\)

  3. \(\hex{0400}\)

  4. \(\hex{1111}\)

  5. \(\hex{8888}\)

  6. \(\hex{0190}\)

  7. \(\hex{abcd}\)

  8. \(\hex{5555}\)

Hint Answer